Probing structural and motional features of the C-terminal part of the Human Centrin 2/P17-XPC microcrystalline complex by solid-state NMR spectroscopy.
نویسندگان
چکیده
Insight into structural and motional features of the C-terminal part of the Human Centrin 2 in complex with the peptide P17-XPC was obtained by using complementary solid-state NMR methods. We demonstrate that the experimental conditions and procedures of sample crystallization determine the quality of solid-state NMR spectra and the internal mobility of the protein. Two-dimensional (2D) (13)C-(13)C and (15)N-(15)N correlation spectra reveal intra- and inter-residue dipolar connectivities and provide partial, site-specific assignments of (13)C and (15)N resonance signals. The secondary structure of the C-ter HsCen2/P17-XPC complex in a microcrystalline state appears similar to that found in solution. Conformational flexibility is probed through relaxation-compensated measurements of dipolar order parameters that exploit the dynamics of cross-polarization in multidimensional experiments. The extracted dipolar coupling constants and relevant order parameters reveal increased backbone flexibility of the loops except for residues involved in coordination with the Ca(2+) cation that stabilizes the hydrophobic pocket containing the peptide P17-XPC.
منابع مشابه
Large-Scale Production of Microcrystals and Precipitates of Proteins and Their Complexes
The optimum conditions for the formation of plate-like and urchin-like microcrystals of biomolecules and their transfer to rotors for solid-state NMR spectroscopy depend on a variety of factors, of which minimizing the manipulation of the microcrystals and storing the sample for several months at 277 K (4 °C) play an important role. Three biological systems were investigated: Hen Egg-White (HEW...
متن کاملCK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin β
Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin β) through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W(1)xxL(4)xxxL(8) for XPC (xeroderma pigmentosum group C protein) and the opposite orientation L(8)xxxL(4)xxW(1) for Sfi1 (suppressor of fermentation-induc...
متن کاملStructure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair
Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing...
متن کاملThe E144 residue of Scherffelia dubia centrin discriminates between the DNA repair protein XPC and the centrosomal protein Sfi1☆
Centrins are members of the EF-hand family of calcium-binding proteins, which are highly conserved among eukaryotes. Centrins bind to several cellular targets, through a hydrophobic triad. However, the W(1)xxL(4)xxxL(8) triad in XPC (Xeroderma Pigmentosum Group C protein) is found in the reverse orientation, as in the L(8)xxxL(4)xxW(1) triad in Sfi1 (Suppressor of Fermentation-Induced loss of s...
متن کاملProbing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: application to ubiquitin.
We demonstrate the use of two-dimensional ((13)C,(13)C) double-quantum spectroscopy to detect molecular dynamics by solid-state NMR. Data collected on tyrosine-ethylester (TEE) are in line with previously determined ((1)H,(13)C) order parameters. Application of these experiments to microcrystalline ubiquitin reveals the presence of dynamics on millisecond or faster time scales and differences i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 50 شماره
صفحات -
تاریخ انتشار 2012